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ABSTRACT

Recently, the serial approach to solving the square root ensemble Kalman filter (ESRF) equations in the

presence of covariance localization was found to depend on the order of observations. As shown previously,

correctly updating the localized posterior covariance in serial requires additional effort and computational

expense. A recent work by Steward et al. details an all-at-once direct method to solve the ESRF equations in

parallel. This method uses the eigenvectors and eigenvalues of the forward observation covariance matrix to

solve the difficult portion of the ESRF equations. The remaining assimilation is easily parallelized, and the

analysis does not depend on the order of observations. While this allows for long localization lengths that

would render local analysis methods inefficient, in theory, an eigenpair-based method scales as the cube

number of observations, making it infeasible for large numbers of observations. In this work, we extend this

method to use the theory of matrix functions to avoid eigenpair computations. The Arnoldi process is used to

evaluate the covariance-localized ESRF equations on the reduced-order Krylov subspace basis. This method

is shown to converge quickly and apparently regains a linear scaling with the number of observations. The

method scales similarly to the widely used serial approach of Anderson and Collins in wall time but not in

memory usage. To improve the memory usage issue, this method potentially can be used without an explicit

matrix. In addition, hybrid ensemble and climatological covariances can be incorporated.

1. Introduction

Data assimilation of increasingly plentiful satellite

and radar observations requires efficient and accurate

algorithms. A single overpass of a polar orbiting satellite

over a regional numerical weather prediction (NWP)

domain can produce tens of thousands of potentially

usable observations, especially when all-sky observations

are considered. The Japanese K computer assimilates

radar observations every 30 s with a 100-m grid spacing

(Miyoshi et al. 2016), and with the next-generation

GOES-16 (Schmit et al. 2017) and Himawari-8 (Bessho

et al. 2016) geostationary observing platforms providing

observations with approximately kilometer resolution

approximately every 5minutes, data assimilation algo-

rithms need to handle increasingly large data volumes

to keep pace. In this paper, we describe a new, efficient,

and parallel technique for solving the covariance-

localized square root ensemble Kalman filter equations

that overcomes several issues in previously described

implementations.

The ensemble Kalman filter, first introduced by

Evensen (1994), is one of the most widely used methods

for data assimilation. Using an ensemble with a relatively

small number of members to estimate the flow-dependent

background error covariance from the Kalman filter as

originally formulated (Kalman 1960) made it feasible

to run statistical data assimilation problems even on

very large domains. However, two main issues became
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apparent in the implementation of the ensemble Kalman

filter. The first is that using the same observations to

update the mean and ensemble perturbations leads to a

systematic underestimation of covariance. Second, the

unlocalized estimated covariances contain sample error

due to the low number of ensemble members used,

leading to spurious relationships.

The issue of systematic covariance underestimation

was first solved by perturbing observations with inde-

pendently sampled noise for each ensemble member

(Houtekamer and Mitchell 1998; Burgers et al. 1998).

While this solves the underestimation of covariance,

adding additional noise increases sampling error, causing

the filter to be suboptimal, especially when the ensemble

size is small (Whitaker and Hamill 2002). Subsequently,

the ensemble square root filter (ESRF) was introduced;

it corrects for the underrepresentation of error covari-

ance by adding a square root term to the Kalman update

for the ensemble. Various flavors of ESRF have been

developed (Bishop et al. 2001; Anderson 2001;Whitaker

andHamill 2002), which Tippett et al. (2003) showed are

all equivalent in the sense that they perform analysis

in the same vector space and find the same covariance.

These methods as originally formulated assume the

rank of the covariance matrices is the number of en-

semble members.

Independently from covariance underestimation, the

issue of spurious correlations due to small ensemble size

has been addressed in two main ways: covariance lo-

calization and local analysis. Sakov and Bertino (2011)

demonstrated that these two approaches are approxi-

mately equal, and the choice of approach is therefore

dependent upon other factors. Critically, the localiza-

tion radius used in local methods will determine their

efficiency, and large localization radii will require re-

petitive solution of large problems for each grid point. In

this work, we investigate covariance localization, which

uses a Schur product (component-wise multiplication)

to zero out correlations farther than a specified distance

(Gaspari and Cohn 1999; Houtekamer and Mitchell

2001; Hamill et al. 2001). This causes the rank of the

forward observation covariance matrix used in the in-

verse of the Kalman gain to increase beyond the number

of ensemble members. As shown in Steward et al. (2017,

hereafter S17), a relatively short localization radius will

lead to a full-rank forward observation covariance ma-

trix, while a long localization radius will lead to a rank

deficient one.

The combination of these factors leads to several

different possibilities for scalable parallel implementa-

tions of the ensemble Kalman filter equations. Local

methods with perturbed observations and covariance

localization include Keppenne and Rienecker (2002),

Houtekamer et al. (2014), Bishop et al. (2015), and

Niño-Ruiz et al. (2015), while local analysis methods

based on the ESRF equations include Ott et al. (2004),

Anderson (2003), Zhang et al. (2005), Hunt et al. (2007),

Wang et al. (2013), and Niño-Ruiz et al. (2018). Note

that the widely used local ensemble Kalman transform

filter (LETKF) of Hunt et al. (2007) applies a localiza-

tion strategy based on the observation error covariance

matrix R rather than on the sample covariance matrices

estimated by the ensemble. The widely used and highly

efficient method of Anderson and Collins (2007, here-

after AC07) is a ‘‘global’’ analysis (i.e., nonlocal) par-

allel implementation based on the serial assimilation of

the ESRF equations with covariance localization. This

method also treats the observations as part of an

augmented state in order to update the observations

in parallel without requiring excessive communica-

tion. Houtekamer and Mitchell (2001) describe a global

analysis method with perturbed observations and co-

variance localization.

Because of the difficulties in solving the global ESRF

equations directly, in implementations such as Anderson

(2001), Whitaker and Hamill (2002), AC07, and Aksoy

(2013), a serial approach is utilized where a single ob-

servation is assimilated at a time. This approach is prov-

ably identical to the global analysis without covariance

localization and linear observation operators. However,

with covariance-based localization, the ordering of ob-

servations affects the analysis, as shown in Nerger (2015)

and Bishop et al. (2015), due to the nonlinear nature of

covariance localization. In other words, in the presence

of ensemble sample covariance localization, serially

assimilating observation A before observation B may

give different results than assimilating observation B

before A. The magnitude of this issue has not yet been

fully explored.

As shown inBishop et al. (2015), the issue of observation-

ordering-dependent analysis in serial covariance-localized

methods stems from the inconsistent application of the

high-rank localized covariance matrices. In particular,

when covariance localization is used, the matrix to be

inverted in the Kalman gain becomes full rank or nearly

full rank (as shown in, e.g., S17). Without covariance

localization (or in a local analysis method that does not

increase the rank of thematrix using a Schur product), as

shown in Tippett et al. (2003), the Sherman–Woodbury

update is sufficient for an unlocalized matrix, as the

rank of the matrix is at most the number of ensemble

members (Godinez and Moulton 2012). However, the

fundamental shift to high-rank matrices requires ad-

ditional effort to correct.

Several strategies have been proposed to handle this

observation-ordering dependence within a serial filter.
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Bishop et al. (2015) propose the consistent hybrid en-

semble filter (CHEF) with local analysis and perturbed

observations that will ensure the analysis is consistent

and does not depend on the order of assimilation.

Kotsuki et al. (2017) present a study of observation

ordering with a Lorenz-96 model and investigate rules

for observation assimilation ordering to minimize

analysis forecast error. The method of correcting

sample correlation described in Anderson (2012) has

also been used to reduce the dependence of observation

ordering in a serial filter (J. Anderson 2017, personal

communication).

Extending upon these works, as an alternative to

attempting to apply and update the high-rank localized

matrices serially in a consistent way, we propose as-

similating all observations within the assimilation win-

dow in a single pass as a potential alternative. In other

words, we do not utilize the single observation pro-

cessing strategy normally employed for serial filter so-

lutions and instead solve the ESRF equations directly.

This is done by dividing the necessary matrix operators

across the set of processing elements in a ‘‘top down’’

fashion, as opposed to the ‘‘bottom up’’ approach of

local analysis. This method was utilized in S17 to

provide a global, ‘‘all at once,’’ parallel, direct solution

of the covariance-localized ESRF equations. Note that

‘‘all at once’’ here is used to refer to assimilating all

observations that the serial filter would assimilate one by

one but not all observations within all assimilation

windows at once; that is, the method in S17 as well as the

one presented below are both sequential filters in that

batches of observations can also be assimilated. The

benefit of this approach is that the analysis consistently

applies the high-rank covariance-localized matrices and,

as a result, does not depend on the order of observations.

It provides a solution to the ESRF equations with a

proven error bounds that can be used as a benchmark

against other methodologies.

The cost of this approach is that a product with the

entire full-rank matrix inverse (which also requires a

square root term) of the forward observation error co-

variance is required. S17 solve for eigenvalues and ei-

genvectors of the observation covariance matrix and use

the ESRF matrix function ‘‘scalarized’’ on the eigen-

values to find the required matrix inverses and products.

As eigenpairs are extremely convenient for mathematical

analysis, the approach in S17 also includes an error

bounds related to the smallest eigenvalue used. The final

analysis is also shown not to depend on the ordering of

observations. This error-bounded method, which directly

solves the ESRF equations, is therefore a highly accurate

solution to the ESRF equations known to be the mini-

mum variance solution to the data assimilation problem.

However, as predicted by theory and shown in this

work, while the method described in S17 is accurate to

within a configurable tolerance, it is impractical for large

numbers of observations due to the nature of the ei-

genproblem, where, for general matrices, finding a large

number of eigenpairs scales asO(n3) for a matrix of size

n3 n (Golub and Van Loan 1996). The quantity n is the

number of quality-controlled observations in this case.

This paper extends S17 to take advantage of recent

improvements in the theory and computation of matrix

functions to transform the problem of solving the dif-

ficult inverse and square root portion of the ESRF

equations into computing matrix-vector products that

are used to build up a Krylov subspace and, through a

library call, applying the matrix function directly to a

small dense matrix. This small dense matrix represents

the compression of the larger localized forward obser-

vation covariance matrix onto the reduced-order Krylov

subspace basis.

As we show below, this matrix function method gives

results that are practically identical to the error-

bounded methodology of S17 but is much more com-

putationally efficient. As only a matrix-vector product

with the observation covariance matrix is required, this

matrix function approach is well suited for a matrix-free

implementation where the covariance matrix is not ex-

plicitly formed. This method is also amenable to hybrid

covariance models using both ensemble and climato-

logical covariances.

We implement the matrix function method and com-

pare the performance results with both S17 as well as the

parallel augmented-state method of AC07. As a proof-

of-concept application, we test this method on the dif-

ficult, highly nonlinear case of first-cycle tropical cyclone

(TC) data assimilation. In this case, the background

ensemble can contain position errors of features, and the

posterior analysis increment can be large (e.g., Chang

et al. 2014). Aswe show, the order-dependence issue of a

serial filter is nontrivial in this case. To demonstrate the

unique properties of our newmethod, we investigate TC

assimilation with a long covariance length scale that

would be impractical for local analysis methods. As we

show, thematrix functionmethod is roughly comparable

in terms of wall-time performance to AC07 and far su-

perior to S17. The analysis results do not depend on

observation ordering, like S17 but contrary to AC07.

However, our results demonstrate the memory scaling

of the matrix function method is inferior to AC07 and

suggest that matrix-free methods would be required to

scale this method to the order ofmillions of observations

at once.

This paper is organized as follows. Section 2 sum-

marizes S17 in order to build upon it. In section 3, the
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eigenpair computation of S17 is replaced with a much

more efficient matrix function (MFN)-based approach

that uses a basis for the Krylov space to compress the

forward observation covariance matrix and apply the

covariance-localized ESRF matrix functions to this

reduced-order matrix. Section 4 summarizes AC07.

Section 5 presents numerical results of the matrix

function approach and a performance comparison to

S17 and AC07. Finally, section 6 presents conclusions

and a discussion.

2. Eigenvalue–eigenvector solution of S17

In this section, we briefly review S17 in order to in-

troduce the new matrix function method that extends

it. Given an ensemble Xf of a previous forecast, the

updated analysis to the ensemble mean xf of size

Nstate 3 1, and ensemble perturbations X0f of size

Nstate 3 Nens the square root ensemble Kalman filter

without perturbed observations (Whitaker and Hamill

2002) is

x
a
5 x

f
1K y2H X

f

� �� �
,

X0a 5X0f 1 ~K(02HX) , (1)

where y (Nobs 3 1) are the observations, H(Xf )

(Nobs 3 1) is the mean of the forward-calculated ob-

servation operators, and HXi,j 5 hi[X
(j)
f ]2hi(Xf ) is the

mean-subtracted ith observation operator acting on the

jth ensemble member X
(j)
f . TheHXmatrix isNobs3Nens

(as is 0, a matrix filled with zeros). The traditional

Kalman gain K (Nstate 3 Nobs) is

K5C
x;Hx

D21 , (2)

where Cx,Hx 5 cov(xf , H(xf )) is the localized covariance

between xf (an Nstate 3 1 random variable representing

the previous forecast) and H(xf) (the observation op-

erator acting on this random variable). The matrix

D 5 CHx,Hx 1 R for CHx,Hx 5 cov(H(xf), H(xf)), the lo-

calized forward observation covariance, and R is the

observation error covariance cov(yt,H(xf)) for a random

variable yt representing the true observations without

observation noise.

The ~Kmatrix(Nstate3Nobs), the correction from using

nonperturbed observations, is

~K5C
x,Hx

D21/2
ffiffiffiffi
D
p

1
ffiffiffiffi
R
p� �21

. (3)

As detailed in S17, the covariance matrices we con-

sider can include localized ensemble-based correlations

in observation-space and/or variational-style model-

space localization. For observation-space localization,

a component-wise multiplication + between twomatrices

is used as

Cobs
Hx,Hx 5r

y,y
+ Q

Hx,Hx
, (4)

where ry,y is the localization matrix arising from a lo-

calization function (Gaspari and Cohn 1999) ‘ such that

r
y,y

� �
i,j
5 ‘ d

i,j
L

i,j

��� �
,

�
(5)

where di,j is the distance between the location of the ith

and jth observations, and Li,j is the characteristic length

scale for the localization function ‘. The QHx,Hx is the

sample covariance matrix

Q
Hx,Hx

5
HX(HX)T

N
ens

2 1
. (6)

Likewise, the observation-space localized model and

observation cross-covariance is given by

Cobs
x,Hx 5 r

y,y
+ Q

x,Hx
(7)

for

r
y,y

� �
i,j
5 ‘ d

i,j
L

i,j

��� �
,

�
(8)

where di,j is the distance between the location of the

model state i and observation j with the same localiza-

tion function as Eq. (5), and

Q
x,Hx

5
X0f (HX)T

N
ens

2 1
. (9)

As noted in Campbell et al. (2010), integrated obser-

vations such as satellite scans do not have a particular

vertical location to ascribe. In these cases, model-space

localization is more applicable. For model-space lo-

calization, the observation operator tangent-linear H

and adjoint HT are applied to the localized model co-

variance as

Cmodel
Hx,Hx 5H r

x,x
+ Q

x,x

� �
HT , (10)

where

Q
x,x

5
X0f X0f

� �T

N
ens

2 1
(11)

for the ensemble perturbations X0f , and
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r
x,x

� �
i,j
5 ‘ d

i,j
L

i,j

��� �
,

�
(12)

where di,j is the distance between the location of two

model states i and j with the same localization function

as Eq. (5). Equation (7) is changed analogously as

Cmodel
x,Hx 5 r

x,x
+ Q

x,x

� �
HT . (13)

Note that all of these localized matrices are sparse, and

zero elements (i.e., the correlations farther than the

specified localization distance) are not stored inmemory

or computed. Thus, for example, only those elements of

QHx,Hx that will be nonzero after localization are calcu-

lated. Furthermore, the full model-space matrixQx,x will

never be explicitly formed due to its prohibitively large

size. See S17 for more details.

As we will allow for full-rank matrices, our method is

compatible with either of these localization methods, a

linear combination of the two, or any other ‘‘reasonable’’

modeled covariance between Hx and Hx and x and Hx,

which we denote in general CHx,Hx and Cx,Hx. Note that

in this work, however, we only present results for the

observation-based localization of Eqs. (4) and (7).

We now return to solving Eq. (1). Both S17 and the

matrix function approach utilize a preprocessing step

of a transformation first introduced in Bishop et al.

(2001) to whiten the observations as y5R21/2
old yold, where

the ‘‘old’’ subscript represents the untransformed ob-

servations. The observation operator is also scaled as

H(x)5R21/2
old Hold(x). As a result of this preprocessing

transformation, the R matrix is now identity, which

makes Eq. (3) much easier to solve. For the diagonal

observation error matrix Rold typically used in data as-

similation (which assumes uncorrelated observation

errors), multiplying by R21/2
old is equivalent to dividing

each observation by the standard deviation of the ob-

servation error, and for nondiagonal Rold, this trans-

formation removes that off-diagonal correlation using

principal components.

AsDnew 5CHx,Hx 1 I by this transformation (note that

we drop the ‘‘new’’ subscript in what follows, as it could

be applied to virtually all matrices; i.e., we write Dnew as

D in a slight abuse of notation), this leads to

~K5C
x,Hx

M21 (14)

for M5D1
ffiffiffiffi
D
p

. Let li, vi denote the ith eigenpair of

CHx,Hx. Then,

Mv
i
5C

Hx,Hx
v
i
1 v

i
1 C

Hx,Hx
1 I

� �1/2

v
i
. (15)

As shown in S17, we have

Mv
i
5 l

i
1 11 l

i
1 1

� 	1/2h i
v
i
. (16)

Therefore,

M21v
i
5 l0ivi (17)

for

l0i 5
1

l
i
1 11 l

i
1 1

� 	1/2 . (18)

We find the largest r eigenvalues and corresponding ei-

genvectors ofCHx,Hx, where r is chosen such that lr11# «l
for some small constant «l, and we can therefore solve

M21(02HX)
j
’ �

r

i51

l0iai,j
v
i

(19)

for ai,j 52vTi HXj. An error bound on this approxima-

tion related to «l is proved in S17.

Similarly, for the mean update,

D21 y2H X
f

� �� �
’ �

r

i51

b
i

l
i
1 1

v
i
, (20)

where bi 5 vTi [y2H(Xf )].

The Nobs 2 Nens matrix (Ejg), where

E
j
5 �

r

i51

l0iai,j
v
i
, (21)

and

g5 �
r

i51

b
i

l
i
1 1

v
i
, (22)

is then distributed to all processing elements. The

remaining Kalman gain from Eq. (1) only requires

multiplication with Cx,Hx which can proceed in an em-

barrassingly parallel fashion. This makes an efficient

parallel method that only requires the eigenpairs of the

Nobs 3 Nobs sparse, to be a positive semidefinite sym-

metric matrix CHx,Hx. The Scalable Library for Eigen-

value Problem Computations (SLEPc; Hernandez et al.

2005), which is built upon the Portable Extensible

Toolkit for Scientific Computing (PETSc; Balay et al.

1997, 2016, 2017), is used to solve this eigenproblem

using sparse matrices in a manner that scales well as a

function of the number of processors, as shown in S17.

3. New matrix function approach

We first note that while S17 evaluates the largest r

eigenpairs of CHx,Hx in order to solve Eq. (1), only those
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eigenvectors i such that ai,j for all j and bi 6¼ 0 are re-

quired. This suggests a more efficient solution that does

not require all eigenpairs. In this section, we develop

such a solution that requires only the matrix-vector

productCHx,Hxb for some vector b to compute a reduced-

order, accurate basis for representation of the ESRF

matrix functions.

In addition to solving the eigenproblem, SLEPc can

also evaluate the action of a matrix function on a vector

z5 f(A)b, where z and b are vectors, A is a matrix, and f

is a matrix function in the sense given in Higham (2008).

In the case of the mean K in Eq. (2) given above,

f
1
(D)5D21 , (23)

while for ~K in Eq. (14),

f
2
(D)5 D1

ffiffiffiffi
D
p� �21

. (24)

Recall that D5CHx,Hx 1 I. Also note that f1 involves

the standard linear system of equations Dx 5 b solving

for x, which is normally handled by other methods; in

this work, we test using the matrix function approach for

both the mean and the perturbations.

The matrix function solvers in SLEPc are based on

Krylov subspace methods (Higham 2008, chapter 13).

Earlier works using Krylov subspace methods to ap-

proximate matrix functions include Van Der Vorst

(1987), Saad (1992), and Hochbruck and Lubich (1997).

These methods are appropriate for the case of our large,

high-rank matrixD, as they compute the result zwithout

explicitly building the matrix f(D) The calculation of

f(D)b proceeds in a manner similar to the Arnoldi

method (Arnoldi 1951) for finding eigenpairs. At the

first step, V1 5 b/jjbjj2 and at step m, given an Nobs 3
(m2 1) orthonormal basis Vm21 of the Krylov sub-

space K m21(D, b) 5 spanfb, Db,D2b; . . . ; Dm22bg we
seek the orthonormal basisVm that spansK m(Db). This is

done by the Arnoldi relation DVm21 5Vm21Hm21 1
hm,m21vme

T
m21, whereHm21 is an (m21)3 (m21) upper-

Hessenberg matrix that contains the values of the pro-

jections of D onto the basis Vm21, vm is the mth column

to be added to Vm this iteration, and hm,m21 is the

(m,m21) entry in theHm matrix. Term em21 is them21

unit coordinate vector, so hm,m21vme
T
m21 is the Nobs 3

(m21) zero matrix, except column m21, which is

hm,m21vm. OnceVm is found, the approximation of z can

be computed as

~z
m
5bV

m
f H

m

� 	
e
1
, (25)

where b 5 jjbjj2. The e1 is the first coordinate vector, so

rightmultiplying by it gives the first column ofbVmf (Hm)

in Eq. (25). Note that b5 bVme1. In addition, note that

Hm represents the compression of D onto K m(D, b)

with respect to the basis Vm. Hence, the problem of

computing the function of a large matrixD of orderNobs is

reduced to computing the function of a small matrixHm of

ordermwithm�Nobs. For the latter task, we can employ

algorithms for dense matrices as discussed below.

Note that in the above description, the Arnoldi pro-

cess requires a numerically stabilized Gram–Schmidt

process to orthonormalize the basis vectors in a way that

the final result is not overly affected by numerical noise.

Furthermore, the parallelization of this stabilized pro-

cess requires careful implementation to avoid negatively

impacting performance by creating bottlenecks. Thus,

the relatively straightforward (conceptually) Gram–

Schmidt process becomes rather complex when im-

plemented in a parallel setting as discussed in Björck
(1994) and Frayssé et al. (1998). SLEPc utilizes an effi-

cient parallel version of the iterated classical Gram–

Schmidt (ICGS) in the Arnoldi process that does not

require global communication but maintains numerical

stability. As in the high-level description given above,

the resulting projections in the ICGS process onto the

previous basis vectors are stored in the Hm matrix. For

more details on the orthogonalization process in SLEPc,

see Hernandez et al. (2007).

Them parameter is of paramount importance for this

method. If m is too small, the Krylov subspace will not

contain enough information to build an accurate ap-

proximation. On the other hand, if m is too large, the

memory requirements for storing Vm (as well as the

computational cost) will be prohibitive. For this reason,

SLEPc implements a restarted variant of the method,

wherem is prescribed to a fixed value; here, we usem5
150 which, as shown below, is based on testing for our

particular application. When the subspace reaches this

size, a restart is carried out by keeping part of the data

computed so far and discarding unnecessary informa-

tion. Investigation into restarting matrix function itera-

tions is still an area of active research (Afanasjew et al.

2008; Eiermann et al. 2011; Frommer et al. 2017). SLEPc

implements the Eiermann–Ernst restart (Eiermann and

Ernst 2006), in which only the last basis vector vm11 is

kept (in order to continue theArnoldi recurrence) along

with the matrix Hm that is ‘‘glued’’ together with the

previous ones. After k restarts, the matrix used in the

approximation (25) has the form

H
k3m

5

"
H

(k21)m
0
m

h
(k21)
m11,me1e

T
(k21)m H(k)

m

#
, (26)

where H(k)
m is the matrix computed by the Arnoldi

method in the kth restart. Note that in the Eiermann–

Ernst restart, the glued matrix [(26)] is not used directly
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in (25) because Hk3m has size km3 km, butVm has only

m columns. Therefore, only the last m components of the

vector f (Hk3m)e1 are used in (25) to give a correction to be

added to the approximation available in the previous re-

start. This correction is given by ~z(k) 5~z(k21) 1 c(k), where

c(k) 5bV(k)
m 0, I

m


 �
f H

k3m

� 	
e
1
, (27)

and V(k)
m is the basis computed in the last restart.

Equations (25)–(27) are implemented in a numerically

efficient way in SLEPc.

SLEPc bases the stopping criterion on the norm of the

correction; that is, restarting continues until jjc(k)jj2 ,
b 3 «tol for some user-defined «tol (10

28 by default for

8-byte floating point precision). As noted in Eiermann

and Ernst (2006), the Arnoldi method converges rapidly

with superlinear behavior for smooth functions. The

convergence behavior when including restarting is pre-

sented in Afanasjew et al. (2008) for a related method.

In this work, we are interested in solving g5 f1(D)[y2
H(Xf )] to replace Eq. (22) and Ej 5 f2(D)(02HX)j to

replace Eq. (21) for j 5 1, . . . , Nens Applying the

method described above leads to the evaluation of f1(H1)

and f2(H2) explicitly for small dense matrices H1 andH2 of

the form in Eq. (26). Note that these matrices are not

symmetric even though D is symmetric, and also note that

the matrices grow at each restart of the Krylov method.

SLEPc allows flexibility in the definition of functions

by combining two simpler functions. In our case, we

define f1(�) as the reciprocal of the identity function and

f2(�) as the reciprocal of another function, which in turn

is defined as the sum of two functions (identity and the

square root). All these subfunctions can be evaluated

easily, except the matrix square root. For this, SLEPc

implements a reduction to (real) Schur form followed

by a block version of a Schur algorithm (Higham 1987;

Deadman et al. 2012).

Note that only the matrix action Db is required in this

algorithm, allowing for matrix-free implementations.

This could be potentially useful for defining matrix-

vector products using the ‘‘modulation product’’ defined

in Bishop and Hodyss (2009) or for variational-style

covariances that use fast Fourier transforms (FFTs)

to define the action of a circulant covariance matrix.

Hybrid methods are also possible; as long as the action of

the covariance CHx,Hx as well as Cx,Hx can be applied, any

such modeled covariance can be imposed on the analysis

through the ESRF equations through this approach.

4. Serial augmented-state filter of AC07

To compare the performance of our new matrix

function approach to an existing method, we briefly

summarize the method of AC07 here. AC07 details a

highly scalable approach to solving the ESRF equa-

tions in serial that is provably identical to the global

solution with linear observation operators and without

covariance localization. With covariance localization,

however, the results will depend upon the ordering of

observations as discussed above, although to what ex-

tent this difference will impact ensemble NWP fore-

casts has not yet been explored.

AC07 describe an algorithm that loops over each

observation in serial. Each observation is owned by a

particular processing element. For each observation n,

the owner of that observation broadcasts the observa-

tion details (including the observation location, ensem-

ble forward-calculated values hn(xj) for j 5 1, . . . , Nens

and QC status) to the other processing elements, which

then each process the observation in parallel. An im-

portant innovation of AC07 is the treatment of obser-

vations themselves as part of the augmented state

vector. In other words, just as water vapor, temperature,

and other geophysical variables are updated by the

Kalman filter equations, the observations (which are

assumed to have a particular location in space) are also

updated during the assimilation process. Thus, the nth

observation that is broadcast by the owner-processing

element will have been potentially updated by observa-

tions 1 through n 2 1. This saves the computational ex-

pense of having to communicate in order to recompute

the observation operators.

A scalar form of the ESRF [Eq. (1)] is used to effi-

ciently update all of the covariance-localized state

points and observations. The mean of each state i is

updated as indicated with an overbar

x
i
5 x

i
1 k

i,n
y
n
2H X

f

� �
n

� �
(28)

for the Kalman gain ki,n from Eq. (2), scalarized for

point i for observation n as

k
i,n
5

r
i,n

d
n

1

N
ens

2 1
�
Nens

j51

X0f
� �

i,j
(HX)

n,j
. (29)

Here,

d
n
5

1

N
ens

2 1
�
Nens

j51

(HX)2n,j 1R
n,n
, (30)

where Rn,n (R is assumed diagonal) is the observation

error variance of the nth observation, and ri,n is the lo-

calization factor between the state point i and observa-

tion n; that is, it corresponds to the (i, n) component of
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the rx,x matrix in Eq. (8), although this matrix is not

formed in this implementation.

Similarly, given the scalar square root correction

b
n
5

1

11
ffiffiffiffi
r
d

p , (31)

where

r
d
5

R
n,n

d
n

, (32)

the jth ensemble perturbation at state point i is

updated as

X0i,j 5X0i,j 1b
n
k
i,n

02 (HX)
n,j

h i
. (33)

Note that the analogous equations are used to update

the approximations of the forward observation mean

[H(Xf )]k and perturbationsH(Xf )k,j for k5 n1 1 toNobs;

that is, the remaining unassimilated forward observa-

tions are treated as part of the augmented state vector.

5. Numerical results

The implementation described in section 3 was used

to replace the computation of (Ejg) from Eqs. (21) and

(22) from S17, retaining the remaining components.

For comparison, the serial method of AC07 was im-

plemented and tested as well. To ensure consistent

comparisons, an object-oriented approach was incor-

porated in the Hurricane Ensemble Data Assimilation

System (HEDAS; Aksoy et al. 2012, 2013; Aksoy 2013;

Vukicevic et al. 2013; Aberson et al. 2015) to maintain

consistency in observation processing, quality control

(QC), and disk input/output among all three im-

plementations. Only the filter aspect differs.

All timings were tested on the NOAA jet super-

computing system xjet installed in 2015/16, where each

node has 24 cores with a 2.3-GHz Intel Haswell CPU and

2.66GBRAM connected via FDR Infiniband. As a proof

of concept for this method, we ran two experiments, each

with 30 Hurricane WRF (HWRF; Gopalakrishnan et al.

2011) ensemble members, using the Hurricane Edouard

(2014) study described in Christophersen et al. (2017).

Both of these experiments use quality-controlled ob-

servations from sources including satellite retrievals and

the NASA AV6 Global Hawk 20140916GH Storm

Survey mission (Zawislak et al. 2016; Rogers et al. 2016;

Christophersen et al. 2017).

To illustrate the performance on a relevant single

cycle as in Christophersen et al. (2017), the first ex-

periment uses HWRF to spin up 30 GFS ensemble

members initialized at 1200 UTC 16 September 2014 for

4 h, then assimilates 15 200 quality-controlled observa-

tions from this set at 1600 UTC 16 September 2014 6
30min using HEDAS. The localization length scale was

set to L5 240 as c5 L/2 from Eq. (4.10) of Gaspari and

Cohn (1999), as described in S17. Figure 1 shows the

analyzed water vapor field at level 20 (out of 60) for the

eigenproblem-based solution (EPS), MFN, and serial

implementation of AC07. Ten different random obser-

vation orderings were assimilated. The mean and stan-

dard deviation of the 10 different AC07 analyses are

shown in Figs. 1a and 1b. As shown, the standard de-

viation of these different orderings can reach up to ap-

proximately 1.5 g kg21. The same 10 random orderings

were assimilated with the MFN solution as shown in

Figs. 1c and 1d. Each time, the MFN analysis was

identical to within 1027; the standard deviation is less

than 1027 (‘‘zero’’) as well. For comparison, the absolute

difference between the average serial analysis and the

EPS analysis is shown in Fig. 1e, which as shown is

greater than 2 gkg21 in places. The absolute difference

between the MFN and EPS solution is shown in Fig. 1f,

which is also ‘‘zero.’’

To emphasize the order-independence issue, Fig. 2

shows the assimilation of the first two random observa-

tion orderings assimilated in Fig. 1 (order 1 and order 2).

No effort was made to maximize this difference for

AC07—the first two random orderings were chosen—

but likewise, no attempt was made to minimize forecast

impact in AC07 by optimizing the ordering as in Kotsuki

et al. (2017). The differences at this level reach up to

3.5 g kg21. The root-mean-squared difference of the

entire domain at this level was approximately 0.5 g kg21.

However, the MFN analyzed solutions with different

orderings were found to be identical to within 1028. A

similar tolerance was found by comparing the MFN and

EPS solutions.

Figure 3a shows the level 20 water vapor standard

deviation (across the ensemble) of the prior ensemble

perturbations X0f , while the standard deviation of the

MFN posterior perturbations X0a with orderings 1 and 2

(which are numerically equivalent up to single pre-

cision) is shown in Fig. 3b. Figures 3c and 3d show the

standard deviation of X0a at this level for orderings 1 and
2, respectively, with the AC07 filter. Figure 3e shows the

two standard deviations differ by up to 0.1 g kg21, while

the difference between theAC07 order 1X0a and the EPS
solution is up to 0.35 g kg21. As in the mean, the MFN

perturbations and the EPS perturbations are identical to

within 1027.

As shown in Figs. 1–3, the differences in the xa analysis

with random orderings using the AC07 filter are large

enough that they are comparable to the posterior
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FIG. 1. Comparison betweenwater vapor (g kg21) at level 20 (of 60 total, corresponding to a height

of approximately 2.5 km) of the Hurricane Edouard single cycle case of Christophersen et al. (2017)

with 15 200 observations and L 5 240 as described in S17. Ten different random orderings of ob-

servations were used. (a) The average of the 10 AC07 xa analyses. (b) The standard deviation of
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covariance in certain locations. This is likely due to the

highly nonlinear nature of the first-cycle tropical cyclone

data assimilation problem. In this application, flights are

used as observing platforms to narrow the inner-core

uncertainty as shown in Fig. 3. The first-cycle back-

ground contains ensemble members with simulated

tropical cyclones with features centered at different lo-

cations, leading to large analysis updates. The main area

of uncertainty in theAC07 analyses is actually outside of

the inner core in the southwest quadrant near an area of

dry air inflow.As shown, over the different serial courses

of assimilation, the order-dependent error standard

deviation of this region can grow to be roughly equiva-

lent in magnitude to the posterior covariance. The ma-

trix function approach, however, is order independent

and therefore removes this source of error and is thus

more numerically consistent with the eigenpair-based

solution to the ESRF equations.

Having established that in this case the matrix func-

tion solution is numerically similar to the EPS method,

which has a proven error bounds, we now turn our at-

tention to the computational performance of the new

method. For this purpose, we use a second experimental

setup that combines the observations at all times that fall

within the same domain as the first experiment. This

leads to up to 35 420 quality-controlled observations that

can be used for performance testing.

Keeping 1/2 of the total number of observations from

all cycles fixed at 17 700, the scaling as a function of

number of cores is shown in Fig. 4. The matrix function

method scales nearly linearly as a function of the num-

ber of processing elements as in S17, but overall, the wall

time remains bound by I/O time.

As a function of the number of observations, theMFN

implementation scales much better than the EPS as

shown in Fig. 5, where the number of processing ele-

ments is fixed at 386, L 5 240 for the correlation length

scale, and the number of observations varies. As dis-

cussed in S17, L 5 240 leads to points across more than

half of the domain being correlated, which in turn leads

to a relatively dense, nearly full-rank matrix. As pre-

dicted by theory, the EPS solution appears to scale as

the cube of the number of observations. However, the

MFN approach apparently scales linearly. Times for the

EPS solution longer than 45min are not shown. With

17 700 observations on 386 processing elements, the EPS

solution took 41:28 to complete from start to finish (in-

cluding expensive disk reading and writing), while the

MFN solution took only 16:42. The MFN solution con-

tinues to scale well even at 35 400 observations, com-

pleting in 30:45, which is still more than 10min faster

than the EPS solution with half as many observations.

Therefore, as shown, the MFN approach scales much

better as function of the number of observations than

the EPS solution.

The MFN solution is also roughly comparable to the

AC07 solution in terms of wall time. While the MFN

approach is actually slightly faster for small numbers of

observations, for the largest number of observations

tested (35 400 observations), the serial filter is faster

with a wall time of 28:24, as opposed to 30:45. However,

the wall-time differences are small enough that the

observation order independence of MFN apparently

makes it competitive with AC07 for these numbers of

observations. This is somewhat surprising, as the only

communication used by the AC07 filter is to broadcast

observations, while distributed matrix multiplications

are required by the MFN approach. However, the MFN

approach has the potential benefit that it does not seri-

ally iterate over the observations, but instead can pro-

cess all observations in parallel.

The number of matrix multiplications, and hence the

overall timing of the matrix function solution, is directly

related to the number of restarts and m, the maximum

basis size before restarting. Increasing m leads to fewer

restarts but requires additional memory and dense ma-

trix processing time. The number of Eiermann–Ernst

restarts necessary for convergence withm5 150, as used

in our study, ranged from 1 for the smallest number of

observations (2760) to 2 for the largest number of ob-

servations (35 420). The SLEPc error estimate at the end

of each restart iteration for the smallest number of ob-

servations was on the order of 1022 for k 5 0 and 10215

for k5 1, while for the largest, the error was on the order

of 1022 for k 5 0, 1028 for k 5 1, and 10213 for k 5 2.

It appears the number of restarts grows very weakly

with Nobs.

Table 1 shows the time necessary to solve the matrix

function portion of the ESRF equations per ensemble

member with L 5 240 for the 17 700-observation case

as a function of varying the m parameter. As shown, m

less than 100 requires an excessive number of restarts

 
these 10AC07 xa analyses. (c) The average of the 10MFN xa analyses. (d) The standard deviation of
the MFN analyses, which is less than 1027 at all points. (e) The absolute difference between (a) and

the EPS solution. (f) The absolute difference between (c) and the EPS solution (also less than 1027

for all points).
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FIG. 2. Comparison between analyzed xa level 20 water vapor, as in Fig. 1, for two of the 10 different

random orderings of observations. The serial filter of AC07 with (a) ordering 1 and (b) ordering 2.

(c) MFN analyzed xa ordering 1. (d) MFN xa ordering 2. (e) The absolute value difference between

(a) and (b). (f) The difference between the two MFN orderings in (c),(d), which is less than 1027. The

difference between the MFN and EPS analysis for this case is also less than 1027 at all levels.
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FIG. 3. Ensemble spread (i.e., standard deviations over the ensemble) of water vapor (g kg21) at

level 20, as in Figs. 1 and 2. Here, the first two random orderings of observations were used as in Fig. 2.

(a) The standard deviation of the prior distribution X0f at this level. (b) The standard deviation of the

MFN posterior distribution X0a (orderings 1, 2, and the EPS solution are the same to within 1027).
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and total matrix product evaluations; form greater than

100, the overall performance is dependent upon the

exact number of matrix product evaluations required to

reach the numerical accuracy of «tol 5 1028. For this

case, m 5 125 requires the fewest matrix-product eval-

uations, which is highly correlated with the total MFN

solve time. Table 2 shows the same results with the lo-

calization length scaleL5 60. In this case,m5 150 gives

the optimal results. The best particular value of m

therefore depends upon the factorization of the total

number of evaluations required. Anm larger than 100 is

recommended to avoid excessive restarting, and an m

less than 200 is recommended due to the expense of

dense matrix evaluations. We choose m 5 150 to split

the difference.

The scaling of memory usage on 386 xjet processors

as a function of number of observations is shown in

Fig. 6. As shown, and as expected by theory, the EPS

solution memory usage scales cubically as a function of

the number of observations. The serial filter of AC07

apparently scales linearly, as it only processes a single

observation at once. TheMFN solution, which currently

stores the entire sparse CHx,Hx matrix in memory, scales

better than S17 but apparently worse than linearly. This

is because with L 5 240, the CHx,Hx matrix is relatively

dense. For a dense matrix, the memory requirements

would be quadratic, while for a sparse matrix, the

memory requirements would be closer to linear. The

memory scaling here is consistent with a factor some-

where in between quadratic and linear. Note, however,

that the expense here is related to the representation of

CHx,Hx and not directly to the MFN approach.

Indeed, the computational performance of the MFN

method comes down to computing the matrix product.

As mentioned, as onlyDb is required in this method, it is

not necessary to explicitly store thematrixD in memory.

This so-called ‘‘matrix-free method’’ was implemented

and tested successfully. As a first test, we used a simple

implementation that brute-force recalculated the ele-

ments of CHx,Hx when required and avoided storing

these elements in memory. While the memory usage

decreased as expected, the time necessary to recompute

the covariances made the method uncompetitive with

the stored-in-memory matrix approach. The matrix-

free implementation took 29:19 on 386 processors for

4500 observations versus just 5:40 with a stored matrix.

 
Standard deviation of X0a for AC07 (c) ordering 1 and (d) ordering 2. (e) The absolute difference

between the serial analysis with orderings 1 and 2 from (c),(d). (f) The absolute difference between the

EPS solution and ordering 1 from (c).

FIG. 4. (a) Speed increase of applying the MFN filter, including the time to calculate (Ejg) using the MFN

approach and solve Eq. (1), as a function of number of processing elements with the number of observations fixed at

17 000. The speedup is nearly linear and is dominated by the time applying CHx,Hx. This should be compared with

Fig. 6d from S17, which likewise shows a nearly linear speed increase as a function of number of processors during

filter time. (b) Total speed increase of wall time including disk reads and writes. As the process is I/O bound, the

total speed increase is sublinear. Compare with Fig. 6f from S17, which likewise shows a sublinear increase (and

even an eventual decrease) as a function of total wall time due to degradation in parallel I/O performance.
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A more suitable matrix-free implementation, such as

one based on FFT, wouldmake this feature of thematrix

function algorithm more attractive. Additional research

is required in this area.

As an additional note, the MFN approach for solving

the mean x5 f1(D)[y2H(Xf )] was compared with the

more traditional method of solving for Dx5 y2H(Xf )

using GMRES. In this particular case, the MFN was

found to be competitive with GMRES. This may be

because D is relatively dense, and an efficient pre-

conditioner for use with GMRES was not found. Re-

gardless, the novel contribution here is computing the

more difficult f2(D)(0 2 HX) using MFN.

6. Discussion and conclusions

In this work, we describe the utilization of matrix

functions, a powerful linear algebra tool, to derive nu-

merically accurate and efficient solutions of the ESRF

equations. With this method, high-rank localized co-

variance matrices can be applied consistently in such a

way that the final analysis does not depend upon the

ordering of observations. For the number of observa-

tions investigated, this method is roughly competitive in

terms of wall time with the highly efficient serial filter

of AC07.

The matrix function approach is built on the Arnoldi

iteration, which provides a basis for the Krylov subspace

spanned by the covariance matrix of the forward-

computed observations CHx,Hx and a vector b. This ba-

sis allows for evaluation of the ESRF matrix functions

over a much smaller, upper-Hessenberg matrix. The

Scalable Library for Eigenvalue Problem Computations

FIG. 5. Scaling as a function of number of observations with

386 processors. The MFN approach described in this paper

appears to scale approximately linearly (y 5 4.86 3 1022x 1
152) while the EPS scales consistent with a cubic fit (y 5 4.43 3
10210x3 1 302) The serial filter of AC07 likewise scales linearly

(y 5 4.04 3 1022x 1 224.72) Times longer than 2500 s for the

EPS solution are not shown.

TABLE 1. Time to complete the solution, number of restarts (per

control vector), and total number of matrix product evaluations as

a function of m, the size of the Krylov subspace before restarting, re-

quired to solve the perturbation update matrix function f2 in Eq. (24)

withL5 240 [inEqs. (5) and (8)] and 17 700 observations, as described

in section 5. The timings arewith a singleMPI process on an Intel Core

i7 server. Note these times are for a single ensemble member.

m Time (s) Restarts Total evals

25 2.5743 3 104 74 1875

50 4.8219 3 103 12.2 660

75 3.2298 3 103 5 450

100 2.8686 3 103 3 400

125 2.6897 3 103 2 375

150 3.2460 3 103 2 450

175 2.5257 3 103 1 350

200 2.8950 3 103 1 400

TABLE 2. As in Table 1, but withL5 60. The reduction in time vs

L5 240 is due to the increased sparsity of the localization matrices

ry,y and rx,y.

m Time (s) Restarts Total evals

25 1.6822 3 104 66.2 1705

50 3.8763 3 103 15.0333 802

75 2.7369 3 103 6.9 593

100 2.2974 3 103 4 500

125 2.2872 3 103 3 500

150 2.0749 3 103 2 450

175 2.4319 3 103 2 525

200 2.2491 3 103 1.43 333 487

FIG. 6. Memory usage as a function of the number of observa-

tions with 386 processors. The EPS scales cubically as predicted by

theory, while the serial filter of AC07 scales linearly in memory

usage. TheMFN approach apparently scales worse than linearly. A

matrix-free implementation of MFN improves memory scaling.
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(SLEPc; Hernandez et al. 2005) includes an efficient

implementation of the matrix function method, along

with the Eiermann–Ernst restart (Eiermann and Ernst

2006). Only thematrix-vector product is required, which

can be used to provide matrix-free implementations;

however, for performance reasons, storing the entire

sparse CHx,Hx matrix across processing elements may be

preferable, as shown in our case. The ability to consis-

tently incorporate high-rank covariance models with a

known error bounds provides a platform to investigate

hybrid ensemble–climatological covariances, as well as

observation- versus model-space covariance issues.

Additional effort will be needed to fully understand

the computational performance of this method in com-

parison to other existing parallel EnKF techniques, but a

few basic conclusions can be drawn. First, in comparison

to the eigenpair solution method of S17, the matrix

function approach scales much better as a function of

the number of observations assimilated and uses less

memory while maintaining independence of observa-

tion ordering and achieving nearly identical numerical

results. Second, while this method and the consistent

hybrid ensemble filter (CHEF) of Bishop et al. (2015)

are similarly independent of the order of observations

for high-rank covariance models, as the matrix function

approach applies the high-rank covariance matrices

globally, it may be more computationally efficient than

CHEF (which applies the matrices locally), especially

for long localization lengths. This approach also solves

the ESRF equations rather than using perturbed ob-

servations. Finally, the matrix function method is com-

petitive with the serial implementation of AC07 in terms

of wall time for the cases tested here. While it uses more

memory, the matrix function approach is shown to be

more faithful to the eigenpair-based solution of the

ESRF equations than AC07. It is unknown if this addi-

tional precision will have a positive impact on forecasts.

The recent work of Emanuel and Zhang (2017) dem-

onstrates the crucial impact of inner-core moisture on

TC predictability, and the two serial AC07 analyses

shown in Fig. 2 with merely different observation order-

ings differ on the extent of dry air near the inner core. As

shown, the two water vapor analyses for this difficult first-

cycle TC case can differ by up to 3gkg21, and therefore it

is reasonable to expect the two serial analyses shown in

Fig. 2 may produce qualitatively different medium-term

forecasts. Amethod that can increase fidelity to the ESRF

equations, known to be the minimum variance solution

(e.g., Bishop et al. 2015), for tropical cyclone cases may be

worth the additional computational expense. Because of

the efficiency and ease of implementation of the serial

filter, continued research into minimizing observation

ordering impact is also likely to be beneficial.

Comparison of this method to other local analysis

methods remains more unclear. The performance of

local analysis methods is most critically related to the

radius of influence. For large radii as considered here,

this would likelymake local analysis methods inefficient,

as the problem for each local grid point becomes nearly

as large as the entire domain. However, in such cases,

when sample-based covariance localization is utilized

with the ESRF approach, the matrix function approach

could also potentially be used to improve performance

versus O(n3) algorithms, such as finding eigenpairs or

the Cholesky decomposition. This may be unnecessary,

however, if the number of local observations does not

exceed ’ 102.

At the moment, a major weakness of the nonlocal

matrix function approach in comparison to the AC07

serial approach is the memory usage scaling. Extrapo-

lating the results presented in Fig. 6 on 386 processors

and keeping the number of processors constant, with

approximately 80 000 (assuming quadratic growth) to

115 000 observations (assuming linear growth), the ma-

trix function approach would run out of memory. By

comparison, the serial filter would run out of memory

(assuming linear growth) at approximately 3.2 million

observations. A matrix-free implementation would

address this issue. Since in the matrix function ap-

proach, computational performance comes down effi-

cient methods of applying the matrix product, we aim

to investigate application of the modulation product of

Bishop and Hodyss (2009) to apply correlations in order

improve the memory scaling issue. In the meantime,

batch processing of large numbers of observations is one

potential workaround.

The algorithm described in this paper requires a dis-

tributed sparse matrix implementation, such as that

available in the Portable Extensible Toolkit for Scien-

tific Computing (PETSc; Balay et al. 1997, 2016, 2017),

which SLEPc is built upon. In addition, the restarted

Arnoldi process (including a numerically stable parallel

Gram–Schmidt orthogonalization process) must be im-

plemented to estimate the required reduced-ordermatrix

function products. When using the SLEPc library that

provides this functionality, this approach is not more

difficult than the eigenpair implementation of S17.

However, either implementation is certainly more com-

plex than the serial approximation.

Finally, while the order-dependency issue shown

here is nontrivial, the TC first-cycle case is likely to be a

‘‘worst case’’ scenario due to the highly nonlinear na-

ture of feature misalignment. While Nerger (2015)

hypothesized that the effect of the observation-order

dependency in the serial implementation is small when

the analysis is not far from the prior, the filter described
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here may be useful to test the practical effect of

this hypothesis in a variety of large-scale cases and to

develop mitigation solutions for the serial approach

when necessary.
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